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Abstract

Let G be a quasirandom graph on n vertices, and let W be a random walk on
G of length αn2. Must the set of edges traversed by W form a quasirandom graph?
This question was asked by Böttcher, Hladký, Piguet and Taraz. Our aim in this
paper is to give a positive answer to this question. We also prove a similar result
for random embeddings of trees.

1 Introduction

Given a graph G and sets A,B ⊆ V (G), let

eG(A,B) = |{(a, b) ∈ A×B : ab ∈ E(G)}|

be the number of edges from A to B. A graph G with n vertices and ρ
(
n
2

)
edges is

ε-quasirandom if
|eG(A,B)− ρ|A||B|| < ε|A||B|

for all sets A, B ⊆ V (G) with |A|, |B| ≥ εn. Thus a quasirandom graph resembles a
random graph with the same density, provided we do not look too closely. Quasiran-
dom graphs were introduced by Thomason [10] and have come to play a central role in
probabilistic and extremal graph theory. The reader is referred to the excellent survey
article by Krivelevich and Sudakov [5] for further details.

The random graph Gn,p, in which edges appear independently with probability p, is
quasirandom with high probability. More generally, given a quasirandom graph G we
can, with high probability, obtain a new quasirandom graph Gedge(p) by retaining edges
of G with some fixed probability p. (The random graph Gn,p can be thought of as the
result of applying this process to the complete graph Kn.)

Another natural way to choose a random set of edges from an n-vertex graph G
is given by the following process. A random walk W on G is a sequence of vertices
W0,W1, . . . , Wl where W0 is chosen from some initial distribution and Wi+1 is selected
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uniformly from the neighbours of Wi, with all choices made independently. We will be
interested in the case when W traverses some constant fraction of the edges of G, so we
take the length l of W to be αn2 for some constant α > 0. To avoid confusion with the
random walk W , let Gwalk(α) denote the random subgraph of G consisting of those edges
traversed by W . The main question that we are interested in here is the following: given
a quasirandom graph G, is it true (as with Gedge(p)) that Gwalk(α) is also quasirandom
with high probability?

First note that this is true when this process is applied to the complete graph G = Kn.
Indeed, Gwalk(α) is very close to Gn,p for some p. This is because the sequence W0, W1, . . .
is very nearly a sequence of independent random vertices of G (‘very nearly’ because
consecutive terms of the sequence are forced to be distinct). Then W0W1,W2W3, . . . and
W1W2,W3W4, . . . are very nearly two sequences of independent random edges of G, so
Gwalk(α) is very close to a random subgraph of G.

The following heuristic suggests that Gwalk(α) should also be quasirandom for a
general quasirandom graph G.

1. The graph G is approximately regular, of degree ρn, so the equilibrium distribution
of W is approximately uniform. The random walk W ‘mixes rapidly’, so most
sequence terms have distributions close to the equilibrium distribution, and W
visits each vertex around the same number of times: approximately αn times.

2. For each vertex v of G, the random walk leaves v αn times, so picks up a random
set (chosen with replacement) of αn of the ρn edges at v. Taking the union of
these sets of edges gives a random subgraph of G.

While this simple plan seems quite plausible, there are two reasons why it is not easy
to implement, both connected to Step 1. The first is related to what exactly it means to
say that W ‘mixes rapidly’. Since quasirandomness does not say anything about small
parts of the graph, G might have small configurations of low degree vertices that can
trap the random walk for long periods of time. The second is that, even if we know the
distribution of each Wi, these random variables are not independent for different i.

These difficulties can, however, be overcome, and an argument of the above form can
be used to show that the subgraph of G spanned by W will be quasirandom with high
probability.

Theorem 1. Given α, ρ, η > 0 there exists ε > 0 such that the following holds. Let G be
an n-vertex ε-quasirandom graph with ρ

(
n
2

)
edges, and let W be a random walk on G of

length αn2 starting at any vertex W0 of G with degree in [(ρ− ε)n, (ρ + ε)n]. Then, with
probability 1− oε(1), the graph Gwalk(α) is η-quasirandom with (1− e−2α/ρ + oε(1))ρ

(
n
2

)
edges.

Here oε(1) means a quantity which is less than f(ε) for n sufficiently large, for some
f(ε) tending to zero with ε. This dependence on ε, and not just n, is necessary to deal
with the ‘bad small subgraph’ problem described above.
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If we also have a lower bound on the minimum degree of G then we can say much
more: if we start with a graph that is ε-quasirandom, then, with high probability,
Gwalk(α) will be η-quasirandom for any η > ε.

Theorem 2. Let α, ε, ρ, η > 0 with η > ε and let γ = Cε1/4 for some absolute constant
C > 0. Let G be an n-vertex ε-quasirandom graph with ρ

(
n
2

)
edges and minimum degree

at least γn, and let W be a random walk on G of length αn2. Then, with probability
1− o(1), the graph Gwalk(α) is η-quasirandom with (1− e−2α/ρ + o(1))ρ

(
n
2

)
edges.

In Section 2 we define an explicit model for our random walks and show that Step
2 works straighforwardly in this setting. In Section 3 we carry out Step 1 for the case
where we have a bound on the minimum degree of G. This proves Theorem 2, and
illustrates why we get the weaker conclusion in Theorem 1. In Section 4 we use a more
elaborate argument to perform Step 1 in the general case, proving Theorem 1.

The problems considered in this paper were suggested by Böttcher, Hladký, Piguet
and Taraz [3] after they encountered similar problems in connection with their work on
tree packing. Suppose that we are trying to pack many trees into a copy of Kn. One
approach is to embed some of the trees randomly. If we succeed in packing a small
number of trees, then it would be good to know that the subgraph consisting of unused
edges has nice enough properties that we can iterate the argument and therefore pack a
much larger number of trees. If H is a subgraph of G, and both graphs are quasirandom,
then G−H is also quasirandom. So it would be useful to have a result like Theorem 1,
but for random images of trees rather than paths. We consider such a generalisation in
Section 5.

Since we will only prove asymptotic results we make a number of simplifying assump-
tions. We assume that ε is sufficiently small compared to the other parameters, and are
only interested in statements for n sufficiently large. We omit notation indicating the
taking of integer parts, and ignore questions of divisibility when breaking walks into
pieces of a given size.

2 The list model

We now define a third model of a random subgraph to act as a staging post between
Gwalk(α) and Gedge(p). The subgraph Glist(ν) of G is obtained by selecting νd(v) edges
at each vertex v of G to be retained, with all choices made independently and with
replacement. We give a rather elaborate formal definition in order to introduce some
ideas which will be useful later.

For each v ∈ V (G), let Lv be an infinite list of uniform selections from the neighbour-
hood of v, with all choices made independently. The entry u on the list Lv corresponds
naturally to the edge uv of G, and we define

Glist(ν) =
⋃

v∈V (G)

{uv : u appears in the first νd(v) entries of Lv}.
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In this section we will show that Glist(ν) is very close to Gedge(p) for some p, in the
sense that large subgraphs have similar densities in each model. It will then follow that
Glist(ν) is quasirandom with high probability.

We first calculate the expected density of Glist(ν) in G. The reader is encouraged to
focus on the case where we have a bound on the minimum degree.

Lemma 3. Let G be an ε-quasirandom graph on n vertices with ρ
(
n
2

)
edges, and let

A,B ⊆ V (G) with |A|, |B| ≥ ε0.99n. Then

E
(
eGlist(ν)(A,B)

)
= (1− e−2ν + oε(1))eG(A,B).

Moreover, if the minimum degree of G is at least γn, then, for all A, B ⊆ V (G),

E
(
eGlist(ν)(A,B)

)
= (1− e−2ν + o(1))eG(A,B).

The exact lower bound on the sizes of A and B in the general case is unimportant;
any value asymptotically larger than ε would work equally well.

Proof. Write S = {v ∈ V (G) : d(v) ≥ (ρ− ε)n}. Then

|eG(V (G), Sc)− ρn|Sc|| > εn|Sc|,

so, by ε-quasirandomness, |Sc| < εn.
The edge uv of G appears in Glist(ν) if and only if u appears in the first νd(v) entries

of Lv, or v appears in the first νd(u) elements of Lu. If u, v ∈ S, then the probability of
this occurring is

1− (1− 1/d(v))νd(v)(1− 1/d(u))νd(u) = 1− e−2ν + o(1),

since d(v), d(u) ≥ (ρ− ε)n. So

E
(
eGlist(ν)(A,B)

)
= (1− e−2ν + o(1))eG(A,B) + O(εn(|A|+ |B|))
= (1− e−2ν + oε(1))eG(A,B),

since eG(A,B) ≥ (ρ− ε)|A||B| and |A|, |B| ≥ ε0.99n.
If d(v) ≥ γn for every v ∈ V (G), then the probability of being retained is 1− e−2ν +

o(1) for every edge of G, so

E
(
eGlist(ν)(A,B)

)
= (1− e−2ν + o(1))eG(A,B).

To show that the number of edges retained in any subgraph is close to its expectation
we use Talagrand’s concentration inequality [9]. In its usual form Talagrand’s inequality
is asymmetric and bounds a random variable in terms of its median. We use the following
symmetric version (see [7, Chapter 20]) that gives concentration of the random variable
about its mean.

Theorem 4 (Talagrand’s inequality). Let Ω =
∏N

i=1 Ωi be a product of probability spaces
with the product measure. Let X be a random variable on Ω such that
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(i) |X(ω)−X(ω′)| ≤ c whenever ω and ω′ differ on only a single coordinate for some
constant c > 0;

(ii) whenever X(ω) ≥ r there is a set I ⊆ {1, . . . , N} with |I| = r such that X(ω′) ≥ r
for all ω′ ∈ Ω with ω′i = ωi for all i ∈ I.

Then, for 0 ≤ s ≤ E (X),

P
(
|X − E (X) | ≥ s + 60c

√
E (X)

)
≤ 4e−s2/8c2E(X).

Lemma 5. Let G be an n-vertex ε-quasirandom graph, and fix ν > 0. Then, with
probability 1− o(1),

eGlist(ν)(A,B) = (1− e−2ν + oε(1))eG(A,B),

for all A,B ⊆ V (G) with |A|, |B| ≥ ε0.99n. Moreover, if the minimum degree of G is at
least γn, then the same result holds for |A|, |B| ≥ εn, with oε(1) replaced by o(1).

Proof. We apply Theorem 4 to the space Ω =
∏

v∈V (G)

∏νd(v)
i=1 N(v), where each neigh-

bourhood has the uniform probability measure; we can view Ω as the space of choices
for the first νd(v) entries of each list Lv. For A,B ⊆ V (G) with |A|, |B| ≥ ε0.99n, let
XA,B = eGlist(ν)(A,B). It is easy to see that XA,B satisfies the conditions of Talagrand’s
inequality. Indeed, (i) holds since changing a list entry can change XA,B by at most
c = 2. Furthermore, (ii) holds since, if XA,B ≥ s, then there are s list entries witnessing
this fact. Therefore, by Theorem 4, for 120

√
E (XA,B) ≤ t ≤ E (XA,B) we have

P (|XA,B − E (XA,B)| ≥ 2t) ≤ 4e−t2/32E(XA,B).

By Lemma 3 we have E (XA,B) = (1 − e−2ν + oε(1))eG(A,B). Since eG(A,B) ≥ (ρ −
ε)ε1.98n2, taking t = C ′√nE (XA,B) (= o(E (XA,B))) for large enough C ′ > 0 gives that

P
(∣∣XA,B − (1− e−2ν + oε(1))eG(A,B)

∣∣ ≥ 2t
) ≤ 8−n.

But there are at most 2n choices for A and 2n choices for B. Therefore, with probability
at least 1−2−n, we have that XA,B = (1−e−2ν +oε(1))eG(A,B), for all pairs (A,B) with
|A|, |B| ≥ ε0.99n. The ‘moreover’ statement is proved identically, using the ‘moreover’
statement from Lemma 3.

This is enough to ensure that Glist(ν) is quasirandom with high probability.

Theorem 6. Let ν, γ > 0 and let G be an n-vertex ε-quasirandom graph with ρ
(
n
2

)
edges.

Then, with probability 1−o(1), Glist(ν) is oε(1)-quasirandom. Moreover, if the minimum
degree of G is at least γn, then, with probability 1− o(1), Glist(ν) is ε-quasirandom.

Proof. By Lemma 3, with probability 1− o(1),

|eGlist(ν)(A,B)− (1− e−2ν)eG(A,B)| = oε(1)eG(A,B),
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for all A,B with |A|, |B| ≥ ε0.99n. By the definition of quasirandomness, we also have
that

|eG(A,B)− ρ|A||B|| < ε|A||B|.
So by the triangle inequality,

|eGlist(ν)(A,B)− (1− e−2ν)ρ|A||B|| < oε(1)eG(A,B) + (1− e−2ν)ε|A||B|
≤ (oε(1) + (1− e−2ν)ε)|A||B|
= oε(1)|A||B|.

Hence Glist(ν) is δ-quasirandom with δ = max(ε0.99, oε(1)), where the oε(1) is taken from
the last line. Since (1−e−2ν)ε < ε, the ‘moreover’ statement follows from the ‘moreover’
statement of Lemma 3.

Having shown that Glist(ν) is quasirandom with high probability, it suffices to show
that Gwalk(α) is close to Glist(ν) for some ν. The construction of the random walk W
requires, at each visit to a vertex v, a choice of a random neighbour of v. We obtain a
coupling of Gwalk(α) and Glist(ν) by, at the jth visit to v, taking this choice to be the jth
entry of the list Lv. Then Gwalk(α) and Glist(ν) both consist of the edges corresponding
to some initial segments of the lists Lv, and it is enough to show that we can choose ν
such that the lengths of these initial segments are similar: that is, that the number of
times the random walk W visits each vertex of G is roughly proportional to its degree.

We give two arguments. The first, appearing in Section 3, applies when we have a
good lower bound on the minimum degree of G. The second, appearing in Section 4,
applies to a general quasirandom graph G, but necessarily gives a weaker result. We
include the argument for the special case where G has large minimum degree for two
reasons. First, it proves the stronger result that there is essentially no loss of quasiran-
domness when we pass from G to Gwalk(α), which could be useful for some applications.
Second, it illustrates why the natural approach cannot work in general, justifying the
use of a more technical argument in Section 4.

3 Bounded minimum degree

To begin this section we recall some useful facts. A random walk W on a graph G is a
Markov chain with transition matrix P given by

Puv =

{
1/d(u) if uv ∈ E(G);
0 if uv 6∈ E(G).

Thus P is a normalised version of the adjacency matrix A, where each row has been
scaled by the degree of the corresponding vertex. The eigenvalues of P are all real; let
these be λ1 ≥ λ2 ≥ · · · ≥ λn and write λ = max(|λ2| , |λn|). The first eigenvalue λ1 of P

is always equal to 1 and has a corresponding eigenvector π = (πv) given by πv = d(v)
2e(G) .

This vector π is called the stationary distribution of the walk W . It is well-known (for
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example see [6]) that if G is connected and non-bipartite then, for any initial distribution
of W0, the distribution of Wi converges to π as i →∞ (i.e. P (Wi = v) → πv as i →∞
for each v). The following standard result, which can read out of Jerrum and Sinclair
[4], gives control on the rate of this convergence.

Lemma 7. For any n-vertex graph G with minimum degree at least γn, and any initial
distribution on W0, we have

max
v∈V (G)

|P (Wi = v)− πv| ≤ cγλi,

for some cγ depending on γ.

Now if G is a regular ε-quasirandom graph then λ is small on the scale of ε. (This is
because the ‘spectral gap’ of a quasirandom graph is large [2], and P is a scalar multiple
of A when G is regular.) For a general ε-quasirandom graph this need not be true: for
example, if G contains a small connected component, then λ = 1 (the 1-eigenspace is
spanned by the stationary distributions of each connected component of G). Similarly,
λ can be very close to 1 if there is a small set of vertices that is only weakly connected
to the rest of the graph. However, a lower bound on the minimum degree of G is enough
to recover an upper bound on λ.

Lemma 8. Let G be an n-vertex ε-quasirandom graph with ρ
(
n
2

)
edges and minimum

degree at least γn, where γ ≥ Cε1/4 for some absolute constant C > 0. Then, for n
sufficiently large, λ ≤ 1/2.

Before proving Lemma 8, we note the following simple observation about quasiran-
dom graphs which we will use repeatedly.

Proposition 9. Let G be an n-vertex ε-quasirandom graph with ρ
(
n
2

)
edges, and let X

be a set of vertices with |X| ≥ εn. Let Y = {v ∈ V (G) : |eG(v,X)− ρ|X|| ≥ ε|X|}.
Then |Y | < 2εn.

Proof. We have Y = Y + ∪ Y − where

Y + = {v ∈ V (G) : eG(v, X) ≥ ρ|X|+ ε|X|},
Y − = {v ∈ V (G) : eG(v, X) ≤ ρ|X| − ε|X|}.

Clearly
∣∣eG(X,Y +)− ρ |X| ∣∣Y +

∣∣∣∣ ≥ ε |X| ∣∣Y +
∣∣ ,∣∣eG(X,Y −)− ρ |X| ∣∣Y −∣∣∣∣ ≥ ε |X| ∣∣Y −∣∣ .

But then, since G is ε-quasirandom and |X| ≥ εn, we must have |Y +|, |Y −| < εn.

In particular, taking X = V (G) there are at least (1 − 2ε)n vertices v of G with
|d(v)− ρn| ≤ εn. We will call such vertices balanced.
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Proof of Lemma 8. The proof follows a well-known argument (see for example [2]). We
first estimate the number of labelled copies of C4 in G, and then evaluate the trace of
P 4 in two different ways. Note that the implicit constants in our use of O(·) notation
here are absolute.

The number of labelled copies of C4 in G is

C4(G) = 2
∑

u∈V (G)

∑

v∈V (G)

(|N(u) ∩N(v)|
2

)

= 2 · (1 + O(ε))n · (1 + O(ε))n ·
(

(ρ + O(ε))2n
2

)
+ O(ε)n2

(
n

2

)

= (ρ + O(ε))4n4 + O(ε)n4

=
(
1 + O

(
ε/ρ4

))
ρ4n4.

where the main term here accounts for balanced vertices u and v with close to ρ2n
common neighbours, and the error term bounds the contribution to the sum from each
other pair by

(
n
2

)
.

Now the trace of P 4 is a weighted sum of the closed walks of length 4 in G, where
the weight of the closed walk uvwx is 1/(d(u)d(v)d(w)d(x)). Thus

∑

v∈V (G)

(P 4)vv =
(1 + O(ε/ρ4))ρ4n4

((ρ + O(ε))n)4
+

O(ε)n4

(γn)4
+

O
(
n3

)

(γn)4

= 1 + O
(
ε/ρ4

)
+ O

(
ε/γ4

)
+ O

(
1/(γ4n)

)
,

where the main term counts the contribution from 4-cycles containing only balanced
vertices and the error terms account for the contributions from 4-cycles with at least one
unbalanced vertex and from closed walks of length 4 which are not 4-cycles respectively.
(The lower bound on the minimum degree of G gives an upper bound of 1/(γn)4 for the
weight of any one walk.) But we also have

∑

v∈V (G)

(P 4)vv =
n∑

i=1

λ4
i = 1 +

n∑

i=2

λ4
i ,

from which it follows that

λ4 ≤
n∑

i=2

λ4
i = O

(
ε/ρ4

)
+ O

(
ε/γ4

)
+ O

(
1/(γ4n)

)≤ 1/16,

for ρ ≥ γ ≥ Cε1/4 and n sufficiently large.

For the next lemma we will need to approximate one probability measure by another
on the same space. Given a finite probability space Ω, the total variation distance
between two probability measures µ1 and µ2 is defined by

dTV (µ1, µ2) =
1
2

∑

ω∈Ω

|µ1(ω)− µ2(ω)|.

8



This is the amount of probability mass that would have to be moved to turn one distri-
bution into the other.

Combining Lemma 7 with Lemma 8, it is easy to see that the total variation distance
between Wt and a vertex sampled from the stationary distribution is small when t is
moderately large. In fact, we get much more.

Let L = (log n)2, and let K = αn2/L. Given i < L, let W (i) denote the subsequence
of W obtained by starting from Wi and taking L steps at a time: that is, W (i) =
(W (i)

1 , . . . , W
(i)
K ) where W

(i)
j = Wi+jL for all j < K. For each v ∈ V (G), let X

(i)
v be the

random variable which counts the number of times W (i) visits v. Our next lemma shows
that with high probability X

(i)
v is close to its mean.

Lemma 10. Let G be a graph satisfying the conditions of Lemma 8 and let v ∈ V (G).
Then we have

P

(∣∣∣X(i)
v −Kπv

∣∣∣ ≥
√

8 log n

Kπv
Kπv

)
= O

(
n−3

)
.

Proof. Let µ = πK be the K-fold product measure of π on V (G)K ; that is, µ(w) =∏K
i=1 πwi for w ∈ V (G)K . By Lemma 7 and Lemma 8, we have

P
(
W (i) = w

)
= P

(
W

(i)
1 = w1

)
P

(
W

(i)
2 = w2|W (i)

1 = w1

)
· · ·P

(
W

(i)
K = wK |W (i)

K−1 = wK−1

)

=
(
πw1 + O

(
2−(log n)2

))(
πw2 + O

(
2−(log n)2

))
· · ·

(
πwK + O

(
2−(log n)2

))

=
(
πw1 + O

(
n−6

)) (
πw2 + O

(
n−6

)) · · · (πwK + O
(
n−6

))

=
(
1 + O

(
n−3

))
µ(w),

since γ
ρn ≤ πv ≤ 1

ρn for all v and K = O(n2). Summing over all w gives that

dTV (P, µ) = O
(
n−3

)
,

where P is the measure on V (G)K induced by W (i). Now let

A =
{

w ∈ V (G)K : |X(i)
v (w)−Kπv| ≥

√
2 log nKπv

}
.

By Chernoff’s inequality (see [1, A.1.11 and A.1.13]),

µ(A) ≤ 2e−(4+o(1)) log n = O
(
n−3

)
.

Since P (A) ≤ µ(A) + dTV (P, µ), the result follows.

Now let Xv =
∑L−1

i=0 X
(i)
v be the number of visits W makes to vertex v. Observing

that LKπv = αn2πv = (1 + 1
n−1)α

ρ d(v), we obtain the following corollary by summing
over i and v.
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Corollary 11. Let α, ε, ρ, γ > 0 with ρ, γ ≥ Cε1/4 for some absolute constant C > 0.
Let G be an n-vertex ε-quasirandom graph with minimum degree at least γn, and let W
be a random walk on G of length αn2. Then

P

(∣∣∣∣Xv − α

ρ
d(v)

∣∣∣∣ ≥
√

8 log n

Kπv

α

ρ
d(v) for some v

)
= O

(
n−1

)
.

Hence, with high probability, the number of visits W makes to each v ∈ V (G) is(
α
ρ + o(1)

)
d(v). We can now complete the proof of Theorem 2.

Proof of Theorem 2. By Corollary 11, we have that, with probability 1− o(1),

Glist(α/ρ− o(1)) ⊆ Gwalk(α) ⊆ Glist(α/ρ + o(1)).

From the proof of Theorem 6, we have that, with probability 1− o(1),

|eGwalk(α)(A,B)− (1− e
−2α

ρ )ρ|A||B|| < (1− e
−2α

ρ + o(1))ε|A||B|,

for all A,B ⊆ V (G) with |A|, |B| ≥ εn. Since 1− e
−2α

ρ < 1, Gwalk(α) is ε-quasirandom
with probability 1− o(1).

4 General case

We now move to the case of a general ε-quasirandom graph G with edge density ρ. Such
G must always contain a connected component of order at least (1− ε)n (as otherwise
we can find two sets of size at least εn with no edges between them), so by restricting
our walk to this component we can assume that G is connected.

The extra difficulty in the general case is that there might be small sets of vertices
that are only weakly connected to the rest of the graph in which the random walk can get
stuck. For example, let G be a graph consisting of a small clique of order ε2n/2 joined
to a large clique of order (1− ε2/2)n by a single edge. Then G is ε-quasirandom, but it
is not even true that the number of edges in Gwalk(α) is concentrated near some value.
Indeed, if we start our random walk in the large clique then with positive probability
(depending on ε but not on n) W will lie entirely within the large clique, but there is also
a positive probability (depending on ε but not on n) that W will cross to the small clique
in the first εn2 steps and remain there. So for general quasirandom graphs we cannot
hope for as strong a result as Theorem 2, and our assertions about high probability will
necessarily depend on ε as well as n. In this section we use ‘with high probability’ to
mean ‘with probability 1−oε(1)’, with oε(1) small (depending on ε) for large n as defined
in Section 1.

Our task in this section is to find a weaker replacement for Corollary 11 in Section 3.
Instead of saying that the random walk visits every vertex v around α

ρ d(v) times, we ask
instead that the random walk visits most vertices of G around α

ρ d(v) times. Recall that
we call a vertex v balanced if |d(v) − ρn| ≤ εn. We will show that, if W is a random
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walk of length αn2 on G with W0 balanced, then, with high probability, W hits most
vertices of G about the right number of times. The results in Section 2 can then be used
to prove Theorem 1 in the same way that Theorem 2 was deduced from Corollary 11.

Our first lemma gives a lower bound on the probability that a given step of a random
walk W is in a set S ⊆ V (G). Write 1X for the indicator function of a set X and 1v

for the indicator function of the set {v}. Note that if the initial distribution for W0 is π
then P (Wi ∈ S) =

∑
v∈S πv = π · 1S for any set S ⊆ V (G) when i ≥ 0. The next result

shows that this is still almost true if W starts from a balanced vertex, S is large and
i ≥ 2.

Lemma 12. Let G be a connected n-vertex ε-quasirandom graph with ρ
(
n
2

)
edges, and

let v be a balanced vertex. Let S ⊆ V (G) with |S| ≥ εn. Then, for a random walk W
starting at v, we have

P (Wi ∈ S) ≥ π · 1S − 8
√

ε/ρ ≥ |S|/n− 9
√

ε/ρ,

for i ≥ 2 and n sufficiently large.

Proof. We first show that the random walk is quite well mixed after only two steps. Let
A be the set of neighbours of v with degree at most (ρ+ ε)n and B be the set of vertices
with at least (ρ − ε)|A| neighbours in A — A and B are the ‘well-behaved’ first and
second neighbourhoods of v. By ε-quasirandomness, |A| ≥ d(v) − εn ≥ (ρ − 2ε)n and
|B| ≥ (1− ε)n. We have

1vP =
1

d(v)
1N(v) ≥

1
(ρ + ε)n

1A,

where the inequality holds in each coordinate. For x ∈ B,

(1AP )x =
∑

y∈A
xy∈E(G)

1
d(y)

≥ (ρ− ε)(ρ− 2ε)n
(ρ + ε)n

≥ ρ(1− 4ε/ρ),

where the first inequality holds since each y ∈ A has degree at most (ρ + ε)n, x has
(ρ− ε)|A| neighbours in A and |A| ≥ (ρ− 2ε)n. Since the entries of P are non-negative
we can compose these inequalities to obtain

1vP
2 ≥ (1− 5ε/ρ)

n
1B.

Let b = (1−5ε/ρ)
n 1B. Since πx = d(x)

2ρ(n
2)

, if x is a balanced vertex then (1−ε/ρ)
n−1 ≤ πx ≤

(1+ε/ρ)
n−1 ; otherwise we have the weaker bound πx ≤ 1

ρn . Since at most 2εn vertices are
unbalanced and at most εn vertices are not in B,

‖b− π‖2 ≤
(

n

(
7ε

ρn

)2

+ 3εn

(
2
ρn

)2
)1/2

≤
(

64ε
ρ2n

)1/2

.

11



Then, for i ≥ 2,

P (Wi ∈ S) = 1vP
i1S

= 1vP
2 · P i−21S

≥ bP i−21S

= πP i−21S + (b− π)P i−21S .

By Cauchy-Schwarz, and the fact that the eigenvalues of P are at most 1,

‖(b− π)P i−21S‖2 ≤ ‖b− π‖2 ‖1S‖2 ≤
(

64ε|S|
ρ2n

)1/2

≤ 8
√

ε/ρ,

and so
P (Wi ∈ S) ≥ π · 1S − 8

√
ε/ρ,

proving the first inequality. Since at least |S| − 2εn elements of S are balanced,

π · 1S =
∑

x∈S

d(x)
2ρ

(
n
2

) ≥ (|S| − 2εn)(ρ− ε)
ρn

≥ |S|/n− 2ε− ε/ρ ≥ |S|/n−√ε/ρ,

which proves the second inequality.

We now consider the following variant of the list model for constructing a random
walk. Fix some small length L and let K = αn2/L. By a block rooted at v we mean a
random walk of length L starting at v. For each vertex v, let Λv be an infinite list of
blocks rooted at v. We construct a random walk of length αn2 as follows. Choose W0

from the given initial distribution, and, at each stage s = 1, . . . , K, let W(s−1)L · · ·WsL

be the first unused block rooted at W(s−1)L. At the end of the construction we have
examined K blocks in total from the top of the n lists. Let M be the set of blocks
examined (equivalently, the multiset of roots of blocks used).

Λ1 Λ2 Λ3 Λn−1 Λn

• • • · · · • •
• • • · · · • •
◦ • • · · · ◦ •
◦ • ◦ · · · ◦ ◦
◦ ◦ ◦ · · · ◦ ◦

...
...

...
...

...

Figure 1: The construction examines K blocks from the top of the lists Λv, but we
cannot tell in advance which blocks these will be.

This construction generalises the simple list model (which corresponds to the case
L = 1), and we again hope to exploit the independence of blocks by applying standard
concentration inequalities. There are two main obstacles. One is that we do not know
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anything about the distribution of a block rooted at a vertex v which is not balanced.
We therefore first show that most of the root vertices are balanced. The second obstacle
is that we do not know in advance which set of blocks we will examine. We handle this
by approaching the problem from the other direction: for a given multiset M , what is
the probability that the corresponding blocks do not contain an even distribution of the
vertices? This turns out to be small enough that summing over all possible M gives the
bound we require.

Lemma 13. Let G be a connected n-vertex ε-quasirandom graph with ρ
(
n
2

)
edges, and let

W be a random walk of length αn2 starting at a balanced vertex of G. Let δ = 3 4
√

ε/
√

ρ
and suppose that n is sufficiently large. Then with probability at least 1− 3δ there exists
a set B ⊆ V (G), with |B| ≥ (1−δ)n, such that each vertex in B is hit at least (1−4δ)αn
times by W .

Proof. Take L = ωn for any ωn ¿ n/ log n which tends to infinity as n → ∞, and let
K = αn2/L. Construct a random walk W as described above and let x1, . . . , xK be
the roots of the K blocks used. We first show that with high probability many of the
vertices {x1, . . . , xK} are balanced.

Let U be the number of xi that are unbalanced. By Lemma 12, for i ≥ 2,

P (xi is unbalanced) ≤ 1− (
(1− 2ε)− δ2

) ≤ 2δ2,

since there are at least (1− 2ε)n balanced vertices and δ2 > 2ε. By Markov’s inequality,

P (U ≥ δK) ≤ E (U)
δK

≤ 2δ2K

δK
= 2δ.

Now let M be a multiset of (1−δ)K balanced vertices and let W (1),W (2), . . . , W ((1−δ)K)

be the corresponding blocks. We will show that the probability that these blocks contain
most balanced vertices about the right number of times is large.

Let S ⊆ V (G) with |S| ≥ δn. By Lemma 12, for every 1 ≤ i ≤ (1 − δ)K and every
j ≥ 2 we have P

(
W

(i)
j ∈ S

)
≥ δ − δ2. Let Xij be the indicator of the event W

(i)
j ∈ S,

let Xj =
∑K

i=1 Xij and let XM,S =
∑L

j=1 Xj . For fixed j the Xij are independent, so by
Chernoff’s inequality (see [1, Appendix A]),

P
(
Xj < (δ − 2δ2)|M |) ≤ e−2δ4|M |.

Hence

P
(
XM,S < (δ − 4δ2)αn2

) ≤ P (
XM,S < (δ − 3δ2)(1− δ)KL

)

≤ P (
Xj < (δ − 2δ2)|M | for some 2 ≤ j ≤ L

)

≤ Le−2δ4|M |,

where the second inequality holds for large n because the contribution from X1 is neg-
ligible as L →∞.
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If the random walk W fails to hit at least (1− δ)n vertices at least (1− 4δ)αn times
each then either δK of the xi are unbalanced or there is an M and an S such that
XM,S < (δ − 4δ2)αn2. But the probability of this bad event is at most

P (U ≥ δK) +
∑

M

∑

S

Le−2δ4|M | ≤ 2δ +
(

K + n− 1
n− 1

)(
n

≥δn

)
Le−2δ4(1−δ)K

≤ 2δ + O(K)n · 2n · L · e−2δ4(1−δ)K

≤ 2δ + exp
(
O(n log n) + O(n) + O(log n)− 2δ4(1− δ)K

)

≤ 3δ,

for n sufficiently large, since K À n log n.

We now have everything we need to complete the proof of Theorem 1.

Proof of Theorem 1. We will show that, with probability 1−oε(1), the graph Gwalk(α) is
close to Glist(α/ρ). It then follows from Theorem 6 that Gwalk(α) is oε(1)-quasirandom
with probability 1− oε(1).

Since there are at most 2εn < δ unbalanced vertices in G, by Lemma 13, with
probability at least 1 − 3δ, there is a set B of (1 − 2δ)n balanced vertices such that
every v ∈ B is hit at least (1 − 4δ)αn ≥ (1 − 5δ)α

ρ d(v) times by W . This accounts for
(1−2δ)n · (1−4δ)αn ≥ (1−7δ)αn2 of the list entries examined, so Gwalk(α) differs from
Glist(α/ρ) by at most 14δαn2 edges. Since δ tends to 0 with ε, the result follows.

5 Trees

A homomorphism from a graph H to a graph G is an edge-preserving map φ : V (H) →
V (G). A random walk can be viewed as a random homomorphism of a path; a natural
generalisation is to consider a random homomorphism of some other tree T (sometimes
called a tree-indexed random walk). Just as we traversed a path in one direction, our
trees will be rooted and we think of them as directed ‘downwards’, away from the root.
In this section we will explore to what extent the methods of Section 4 can be applied
in this more general setting.

We generate a random homomorphism as follows. Enumerate the vertices of T as
v0, v1, . . . , vk where, for each j, T [v0, . . . , vj ] is a connected subtree of T containing the
root v0. First choose φ(v0) from a given initial distribution. Then, at each stage j > 0,
let u be the parent of vj in T and choose φ(vj) uniformly at random from the neighbours
of φ(u). All choices are made independently, and we can think of these choices as being
taken from the lists Lv as before.

Suppose now that G is an ε-quasirandom graph on n vertices. Let φ be a random
homomorphism of a tree T of size αn2 to G, and let G(T ) be the subgraph of G consisting
of the edges in the image of φ. Is G(T ) quasirandom with high probability? It is easy to
see that in general the answer is no. For example, let G = Kn and let T be an n/2-ary tree
of depth 2 (here α = 1/4 + o(1)). Then with high probability φ(T ) contains a constant
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fraction of the edges of G. But all of these edges are incident on the neighbourhood of
the root, which has only (1− e−1/2 + o(1))n vertices with high probability, so, with high
probability, G(T ) is not quasirandom.

We seek conditions on T such that we can apply the approach taken in Section 4 with
minimal changes. The condition we give here imposes an upper bound on the maximum
degree of T .

We need an analogue of the second model for the construction of a random walk.
Instead of breaking our path into many short paths, we break our tree into many small
edge-disjoint subtrees.

Lemma 14. Let T be a rooted tree with N edges and let L ≤ N . Then T can be written
as an edge-disjoint union of rooted trees R1, . . . , RK , each of size between L and 3L.

Proof. Let v be a vertex of T furthest from the root such that v has at least L descen-
dants. Then each branch of T lying below v has at most L edges, so some union of these
branches has size between L and 2L; let this be R1. We obtain R2, . . . , RK similarly
until there are less than L edges of T remaining, which we add to RK .

Write R = {R1, . . . , RK} for the corresponding set of abstract rooted trees, up to
isomorphism. In an abuse of notation we use Ri to refer to both the specific subtree of
T and its isomorphism type.

It is convenient to number the Ri such that R1∪· · ·∪Rj is a subtree of T containing
the root for each j. We can then describe the second model for the construction of a
random homomorphism as follows. For each v ∈ V (G) and R ∈ R, let Λv,R be a list of
independent random homomorphisms from R to G that map the root of R to v. Choose
a vertex v1 from the given distribution for the image of the root of T and identify φ(R1)
with the first entry from Λv1,R1 . (If R1 has a non-trivial automorphism group then there
is a choice of identification of R1 with the reference copy inR. The choice is unimportant
provided the same choice is made every time.) Then at each stage j we have already
determined the image vj of the root of Rj , and we identify φ(Rj) with the first unused
element of Λvj ,Rj .

Now let T be a rooted tree with αn2 edges. As before we want to show that T ‘visits’
most vertices of G about the right number of times. We need to be careful here about
what counts as a ‘visit’: what we want to count is the number of times an edge leaves a
vertex, as that is the number of entries of the corresponding list that will be examined.
So we say φ(T ) visits x ∈ V (G) whenever uv is an edge of T with u the parent of v and
φ(u) = x; the number of visits φ(T ) makes to x is the number of edges uv for which this
occurs.

There are three places where the argument in the proof of Lemma 13 needs modifi-
cation or additional details need to be checked.

(i) In the path case the edges (or vertices) of the blocks had a natural order and the
blocks were all the same size. In the tree case we are free to choose a labelling of
the edges in each block, but the blocks might still have different sizes: when we
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look at the 2Lth edge from each block, are there enough blocks with 2L edges that
Chernoff’s inequality will give good concentration?

(ii) In the path case the set of list entries examined was parameterised by multisets
of vertices of G. In the tree case the set of list entries examined is instead pa-
rameterised by multisets of pairs (v,R) with v ∈ V (G) and R ∈ R. So the factor(
K+n−1

n−1

)
in the final sum needs to be replaced by

(K+n|R|−1
n|R|−1

)
, and we must restrict

the size of R to prevent this becoming too large.

(iii) In the path case we had to ignore the first two vertices of each block as we needed to
take two steps before we had good information about the distribution over vertices.
This was safe because the ignored vertices were only a o(1) fraction of the total
number of vertices. In the tree case we must ignore the edges whose start point is
the root of the block or is a child of the root. We need to ensure that the number
of ignored edges is at most a small fraction of the total number of edges.

Problem (i) is avoided by throwing away the small number of edges that receive a
label shared by few other edges. If we throw away all edges that receive a label which
is used less that εn2/L2 times then the total number of edges thrown away is less than
3εn2/L as there are at most 3L edges in each block.

i 3L

K

εn2

L2

Figure 2: Deleting a o(1) fraction of the edges ensures that the remaining labels i are
each used in a large number of blocks.

Problem (ii) is avoided by taking L small: L = log n
2 log 3 suffices. Indeed, since the

number of rooted trees on L vertices is O((2.9955 . . .)L) (see [8]) and αn2

3L ≤ K ≤ αn2

L ,
we have in this case that n|R| ¿ n3/2 ¿ K, and

(
K + n|R| − 1

n|R| − 1

)
¿ Kn|R| ¿ exp

(
O(n3/2 log n)

)
,

which is small enough that it will not overpower the e−cK-type decay.
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Problem (iii) is avoided by having ∆2, the square of the maximum degree of T small
(depending on the desired level of quasirandomness) compared to L: so ∆ can be as
large as a small multiple of

√
log n.

With these modifications to our earlier argument we obtain the following result.

Theorem 15. Given α, ρ, η > 0 there exists ε, c > 0 such that the following holds. Let
G be an n-vertex ε-quasirandom graph with ρ

(
n
2

)
edges, let T be a rooted tree of size αn2

with maximum degree ∆ ≤ c
√

log n and let φ be a random homomorphism from T to G
such that the image of the root is balanced. Then, with probability 1−oε(1), the subgraph
G(T ) of G consisting of the edges of φ(T ) is η-quasirandom with (1−e−2α/ρ +oε(1))ρ

(
n
2

)
edges.

It would be interesting to know how large ∆(T ) can be taken in Theorem 15. By
the example at the start of this section we must have ∆(T ) small compared to n. Is this
already enough?
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